Linear mixed effects models for non‐Gaussian continuous repeated measurement data
نویسندگان
چکیده
منابع مشابه
Generalizability in nongaussian longitudinal clinical trial data based on generalized linear mixed models.
This work investigates how generalizability, an extension of reliability, can be defined and estimated based on longitudinal data sequences resulting from, for example, clinical studies. Useful and intuitive approximate expressions are derived based on generalized linear mixed models. Data from four double-blind, randomized clinical trials into schizophrenia motivate the research and are used t...
متن کاملRobust transformation mixed-effects models for longitudinal continuous proportional data
The authors propose a robust transformation linear mixed-effects model for longitudinal continuous proportional data when some of the subjects exhibit outlying trajectories over time. It becomes troublesome when including or excluding such subjects in the data analysis results in different statistical conclusions. To robustify the longitudinal analysis using the mixed-effects model, they utiliz...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملA Hierarchical Ornstein-uhlenbeck Model for Continuous Repeated Measurement Data
In this paper, we present a diffusion model for the analysis of continuous-time change in multivariate longitudinal data. The central idea is to model the data from a single person with an Ornstein-Uhlenbeck diffusion process. We extend it hierarchically by allowing the parameters of the diffusion process to vary randomly over different persons. With this approach, both intraand interindividual...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Royal Statistical Society: Series C (Applied Statistics)
سال: 2020
ISSN: 0035-9254,1467-9876
DOI: 10.1111/rssc.12405